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Abstract
The perturbation method is developed to deal with the effective nonlinear
dielectric responses of weakly nonlinear graded composites, which consist of
the graded inclusion with a linear dielectric function of spatial variables of
inclusion material. For Kerr-like nonlinear graded composites, as an example
in two dimensions, we have used the perturbation method to solve the boundary
value problems of potentials, and studied the effective responses of nonlinear
graded composites, where a cylindrical inclusion with linear dielectric function
and nonlinear dielectric constant is randomly embedded in a homogeneous host
with linear and nonlinear dielectric constants. For the exponential function and
the power-law dielectric profiles of cylindrical inclusions, in the dilute limit,
we have derived the formulae of effective nonlinear responses of both graded
nonlinear composites.

1. Introduction

Graded composites have attracted much attention because the effective properties of graded
composites are of wide application to electric, thermal, optical and mechanical engineering [1–
10]. For a graded material, its physical properties vary continuously in space. In nature, this
kind of graded material is abundant. On the other hand, graded composites are designed
in laboratories by changing their composition or microstructure for the specific needs of an
engineering design [6, 8, 10, 11]. For example, the dielectric constant, thermal conductivity
and electric conductivity can be designed to vary along the radial direction of a cylindrical or
spherical particle. The physical properties of graded composites are more important and
more useful than those of homogeneous composites in material sciences. For instance,
the mechanical properties of graded composites can be used to improve bonding strength,
toughness and wear resistance [7–9]. However, conventional formulae of effective responses
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in homogeneous composites are not suitable for calculating the effective nonlinear properties of
graded composites. Recently, many authors have devoted themselves to the study of effective
properties of graded composites, and have proposed several methods. For example, Gu and
Yu [12] have studied the effective electric conductivities of linear composites with graded
inclusion, and derived the formulae of cylindrical graded composites for the linear and the
power-law conductivity profiles exactly by using special functions. Dong et al [13] have
investigated the dielectric response of graded particles of anisotropic materials by using the
first-principles approach and effective dipole approximation method. Gao et al [14] have
developed the nonlinear differential effective dipole approximation to derive the effective
nonlinear response of graded composites. In fact, for weakly nonlinear composites with
graded inclusion materials, the perturbation method can be developed to derive the effective
response of nonlinear composites. The merit of this method is that the local potentials in graded
nonlinear composite regions can be exactly derived by solving a set of linear order differential
equations [15]. In this paper we will develop the perturbation method to deal with the effective
dielectric responses of nonlinear graded composites with a unidirectional cylindrical inclusion,
where the dielectric responses of the linear term of the cylindrical inclusions are exponent
dielectric and power-law dielectric profiles, respectively.

Consider the Kerr-like nonlinear constitutive relations

Dα = εα E + χα|E |2 E, in �α (1)

where the subscripts α = i or h. We note that the quantities with subscripts i and h are
the physical quantities of inclusion (i) and host (h) regions, respectively. D and E are the
electric displacement field and the electric field, respectively. �α (α = i, h) is the region
occupied by the α-type material. ε and χ are the linear and nonlinear dielectric responses,
respectively. For nonlinear cylindrical composites, the linear dielectric response εi(r) is a
function of the space variable r of the cylindrical region (where r is the radial variable of
cylindrical inclusion in cylindrical coordinates). The dielectric response, εh, χh and χi are
constants. We assume that the usual electrostatic equations are satisfied: ∇ · D = 0 and
∇ × E = 0. The boundary conditions are the continuities of the potential � and electric
displacement field D on the cylindrical surface, ∂�i, n̂ · Di = n̂ · Dh and �i = �h, where n̂
is the outward normal vector of inclusion surface. In this paper, for a cylindrical particle with
dielectric function profiles, we study the nonlinear response of graded composites with two
cases dielectric profiles, εi(r) = ceβr (c and β are constants) and εi(r) = ckr k .

The paper is organized as follows. In next section, we will give the electric displacement
field and potential equations of Kerr-like nonlinear composites by using the perturbation
method. For both cases of cylindrical dielectric functions εi(r) = ceβr and εi(r) = ckr k , we
derive the zero order and the first order potentials of cylindrical nonlinear graded composites,
respectively. In section 3, in the dilute limit, the effective nonlinear responses of the two types
graded composites are derived. Furthermore we demonstrate that our results can be exactly
reduced to the formulae of nonlinear homogeneouscomposites when we let β → 0 and k → 0,
respectively. In section 4, some conclusions are given.

2. Electrostatic potentials of a graded composite

In order to solve equation (1), the perturbation method is applied to solve weakly nonlinear
composites, |χ |E |2/ε| � 1. The nonlinear coefficient of the host material χh is chosen as the
perturbation parameter. For the potential, �α(r, ϕ), we have

�α(r, ϕ) =
∞∑

k=0

χ k
h �k

α(r, ϕ) in �α. (2)
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Using the relationship E = −∇� and substituting equation (2) into (1), we obtain

Dα =
∞∑

k=0

χ k
h Dk

α in �α, (3)

and

D0
α = −εα∇�0

α, (4)

D1
α = −εα∇�1

α − βα∇�0
α|∇�0

α|2, (5)

D2
α = −εα∇�2

α − βα[∇�1
α|∇�0

α|2 + 2∇�0
α(∇�0

α · ∇�1
α)], (6)

· · · · · · · · · · · ·
where βα = χα/χh. For the electrostatic problems, the electric displacements, Dα , satisfy
∇ · Dα = 0. Thus we obtain the expression ∇ · Dk

α = 0. Substituting equations (4)–(6) into
this expression, we get a set of perturbation equations of potentials �k

α(r, ϕ).

∇ · (εα∇�0
α) = 0, (7)

∇ · (εα∇�1
α) = −∇ · (βα∇�0

α|∇�0
α|2), (8)

∇ · (εα∇�2
α) = −∇ · [βα∇�1

α|∇�0
α|2 + 2βα∇�0

α(∇�0
α · ∇�1

α)], (9)

· · · · · · · · · .
The boundary conditions are obtained by the perturbation method,�k

i = �k
h and n̂·Dk

i = n̂·Dk
h ,

on the cylindrical particle surface ∂�i.
Case (a). Let us consider a cylindrical inclusion with a dielectric function εi(r) = ceβr

and nonlinear dielectric constant χi embedded in a homogeneous and isotropic host with linear
and nonlinear dielectric constants εh and χh. The cylindrical particle has unit radius. If an
external electric Eapp = E0 x̂ is applied to the cylindrical composite along the x̂ direction,
the equations (7)–(9) can be reduced to two-dimensional problems in cylindrical coordinates
(r, ϕ). For the zeroth order potentials �0

α(r, ϕ), the potentials �0
h(r, ϕ) in the host region can

be obtained easily from equation (7): �0
h(r, ϕ) = −(r + Br−1) cos(ϕ).

In the cylindrical region, using the variable separation method, we let the general solution
of the zeroth order potential �0

i (r, ϕ) be the following form:

�0
i (r, ϕ) =

∞∑
n=0

An Rn(r) cos(nϕ), (10)

where Rn(r) is called the radial part. Substituting equation (10) into (7) of the inclusion region,
we have the differential equation of the radial part,

1

r

d

dr

(
r

dRn(r)

dr

)
+ β

dRn(r)

dr
− n2

r2
Rn(r) = 0. (11)

The authors of [16, 17] have given the solution of differential equation (11) by using
the Kummer function F(λ, γ, z) and the Frobenius series method [18]: Rn(r) =
(βr)n F(n, 2n+1,−βr). Using the boundary conditions and considering the Kummer function
F(1, 3,−βr) = 2(e−βr + βr − 1)/β2r2, we obtain the zeroth order potentials �0

h(r, ϕ) and
�0

i (r, ϕ) in [17]:

�0
h(r, ϕ) = −(r + Br−1)E0 cos(ϕ), in �h, (12)

�0
i (r, ϕ) = −AE0 cos(ϕ)(e−βr + βr − 1)/(β2r), in �i, (13)

where

A = 2εh/(ceβv1 + εhv2),
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B = (εhv2 − ceβv1)/(ceβv1 + εhv2),

v1 = (1 − e−β − βe−β)/β2,

v2 = (e−β + β − 1)/β2.

Substituting the zeroth order potential into equation (8), we will obtain the first order
potentials �1

α(r, ϕ). Considering the two equations (12) and (13), we rewrite equation (8) in
the form

∇2�1
h = (8B2r−5 − 4B3r−7) cos(ϕ)E3

0/εh − 4Br−3 cos(3ϕ)E3
0/εh, in �h (14)(

β +
1

r

)
∂�1

i (r, ϕ)

∂r
+

∂2�1
i (r, ϕ)

∂r2
+

1

r2

∂2�1
i (r, ϕ)

∂ϕ2

= − A3 E3
0βi[F1(r) cos(ϕ) + F3(r) cos(3ϕ)]/c in �i (15)

where

F1(r) = [(9e−4βr + e−2βr )β4r4 + (33e−4βr − 15e−3βr + e−2βr − 3e−βr )β3r3

+ (56e−4βr − 58e−3βr − 4e−2βr + 6e−βr )β2r2 + (50e−4βr − 102e−3βr

+ 54e−2βr − 2e−βr )βr + 16e−βr(e−βr − 1)3]/(4β6r7)

F3(r) = [(3e−4βr − e−2βr )β3r3 + (11e−4βr − 13e−3βr − e−2βr + 3e−βr)β2r2

+ (12e−4βr − 30e−3βr + 24e−2βr − 6e−βr)βr − 2e−βr (1 − e−βr )3]/(4β5r6).

Because equation (14) is Poisson’s equation, we write out the general solution of the host
region with the boundary condition at infinity,

�1
h(r, ϕ) = −B1r−1 cos(ϕ)E3

0 − B3r−3 cos(3ϕ)E3
0

− (B2r−3 − 1
6 B3r−5)E3

0 cos(ϕ)/εh − 1
2 Br−1 E3

0 cos(3ϕ)/εh. (16)

For equation (15), the general solution can be given by the sum of the solution �
1g
i (r, ϕ)

of equation (15) without the source term and the particular solution �
1p
i (r, ϕ) of equation (15)

because it is a linear differential equation. From equation (11), we have

�
1g
i (r, ϕ) = −

∞∑
n=0

An(βr)n F(n, 2n + 1,−βr) cos(nϕ)E3
0 . (17)

From equation (15), the particular solution �
1p
i (r, ϕ) is given as

�
1p
i (r, ϕ) = −[a(r) cos(ϕ) + b(r) cos(3ϕ)]A3 E3

0 . (18)

Here we should note that we only give the useful coefficients of the particular solution for
calculating the linear and nonlinear effective responses. Using Frobenius’s method [18], we
get the useful coefficients of function a(r) = c−1βi

∑∞
k=0 akrk+2 as follows:

ak = βk+1
k∑

n=0

(−1)n+1 A0
k−n(k − n + 2)(k − n)!/(k + 3)!,

a0 = β A0
0/3,

A0
k = 1

4

5∑
i=1

Ai
k, (k = 0, 1, 2, 3, . . .),

A1
k = [9(−4)k+3 + (−2)k+3]/(k + 3)!,

A2
k = (−1)k+4[−3 − 15(3)k+4 + 33(4)k+4 + 2k+4]/(k + 4)!,

A3
k = (−1)k+5[6 − 4(2)k+5 − 58(2)k+5 + 56(4)k+5]/(k + 5)!,

A4
k = (−1)k+6[−2 + 54(2)k+6 − 102(3)k+6 + 50(4)k+6]/(k + 6)!,

A5
k = −16(−1)k+7[1 − 3(2)k+7 + 3k+8 − 4k+7]/(k + 7)!.
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Thus the general solution of equation (15) is the following form:

�1
i (r, ϕ) = −A1βr F(1, 3,−βr) cos(ϕ)E3

0 − A3(βr)3 F(3, 7,−βr) cos(3ϕ)E3
0

− [a(r) cos(ϕ) + b(r) cos(3ϕ)]A3 E3
0 . (19)

Using the boundary conditions, we determine the constants of equations (18) and (19). The
coefficients for determining the effective response are given below.

A1 = [ f (B) − a(1)A3 − ceβa′(1)A3 − βi A
3( 3

4v3
1 + 1

4 v1v
2
2)]/[(ceβ + εh)β F(1, 3,−β)

− ceββ2 F(2, 4,−β)/3],

B1 = A1β F(1, 3,−β) + a(1)A3 − (B2 − 1
6 B3)/εh,

f (B) = 3
4 (1 − B)3 + 1

4 (1 + B) − 9
4 B2 + 5

12 B3,

a(1) = c−1βi

∞∑
k=0

ak,

a′(1) = c−1βi

∞∑
k=0

(k + 2)ak .

Up to now, we have given the zeroth and the first order potentials. It is known that the
perturbation solutions of the first order are enough to predict the third order nonlinear effective
response because of the perturbation solution �k

α(r, ϕ) ∝ E2k+1
0 .

Case (b). For the linear dielectric response of a cylindrical inclusion with the power-law
profile εi(r) = ckr k , we can deal with the weakly nonlinear problem of graded composites as
the above process of case (a). The zeroth order potentials are given in [12]:

�0
i (r, ϕ) = −H0r s cos(ϕ)E0, in �i, (20)

�0
h(r, ϕ) = −(r + D0r−1) cos(ϕ)E0, in �h, (21)

where s = (
√

k2 + 4 − k)/2, H0 = 2εh/(εh + cks), D0 = (εh − cks)/(εh + cks). With the
perturbation method, we have obtained the first order potential equation of the inclusion region
from equation (8):

(k + 1)
∂�1

i (r, ϕ)

∂r
+ r

∂2�1
i (r, ϕ)

∂r2
+ r−1 ∂2�1

i (r, ϕ)

∂ϕ2

= −βi H
3
0 E3

0[G1(r) cos(ϕ) + G3(r) cos(3ϕ)]/ck, (22)

where

G1(r) = d1r3s−k−3,

G3(r) = d3r3s−k−3,

d1 = [ 1
2 s(s − 1) − 1

4 ks](3s2 + 1) + 1
2 (s2 − 1),

d3 = (s2 − 1)[ 1
2 (s2 − s − 1) − 1

4 ks].

In order to solve equation (22), the variable separation method is also applied to equation (22)
without source. Letting �0

i (r, ϕ) = ∑∞
n=0 Hn Rn(r) cos(nϕ) and substituting it into

equation (22) without the source term, we have

r2 ∂2 Rn

∂r2
+ (k + 1)r

∂ Rn

∂r
− n2 Rn = 0. (23)

Clearly the solution of equation (23) has the form r s(n) with s(n) = (
√

k2 + 4n2 − k)/2.
Thus, the general solution of equation (23) is obtained. Considering the particular solution of
equation (22) and the potential of the first order in the host region, which is the same form as
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equation (16), in both inclusion and host regions, we obtain the first order solution of potentials
by solving equations (16) and (22):

�1
h(r, ϕ) = −[D1r−1 + (D2

0r−3 − 1
6 D3

0r−5)/εh] cos(ϕ)E3
0

− (D3r−3 + 1
2 D0r−1/εh) cos(3ϕ)E3

0, (24)

�1
i (r, ϕ) = −(H1r s + Hr3s−k−2) cos(ϕ)E3

0 − (H3r p + Gr3s−k−2) cos(3ϕ)E3
0, (25)

where p = (
√

k2 + 36 − k)/2. The coefficients of the first potentials for determining the
effective response are obtained from the boundary conditions of the dielectric displacement
and potential on the cylindrical surfaces:

H1 = [1 − 2D0 − D3
0/3 − sβi H

3
0 (1/4 + 3s2/4) − εh H − ck(3s − k − 2)H ]/(cks + εh),

H = βi H
3
0 d1/(ckd2),

d2 = 1 − (3s − k − 2)(3s − 2),

D1 = H1 + H − (D2
0 − 1

6 D3
0)/εh.

3. Effective nonlinear dielectric response

At low concentration of graded cylindrical inclusion, we will use Landau’s method previously
proposed in [15] to calculate the effective response of graded nonlinear composites, where the
unidirectional parallel grade cylindrical inclusions are dispersedly embedded in a host.

1

V

∫
V

[(εi(r) − εh)E + (χi − χh)|E |2 E] dV = D̄ − (εh Ē + χh|Ē |2 Ē) (26)

where V is the volume of composites. D̄ and Ē denote, respectively, the ensemble average
displacement and electric fields. In order to calculate the effective nonlinear response of the
graded composites, we first define the effective response of the graded composites when we
regard the graded composites as an effective homogeneous medium,

D̄ = εe Ē + χe|Ē |2 Ē, (27)

where εe and χe are the linear and nonlinear effective dielectric response, respectively.
Substituting equation (27) into (26) and considering the fact that the integration of the left-hand
side of equation (26) is zero in the host region, we have
1

V

∫
�i

[(εi(r) − εh)E + (χi − χh)|E |2 E] dV = (εe − εh)Ē + (χe − χh)|Ē |2 Ē . (28)

In the dilute limit, we can regard the external applied field Ea = E0 x̂ as the average electric field
Ē because, in this case, the interactions among particles can be neglected. Hence the effective
response of the graded composites will be obtained by using the potentials of a cylindrical
inclusion region at low concentration limit. Here we should note that two widely used methods,
the Maxwell–Garnett approximation (MGA) and the effective-medium approximation (EMA),
were developed to calculate the nonlinear dielectric response [20–22]. The two methods
can be extended to study the effective response of nonlinear graded composites for higher
concentration. Here we discuss the effective responses in the dilute limit with average field
Ē = Ea, although the concentration range of our method is smaller than that of the Levy and
Bergman method [21, 22].

Case (a). For the exponent dielectric function profile, substituting the potentials of the
cylindrical particle region into equation (28), we get the effective dielectric response,

εe = εh + fi A[c(eβ − β − 1)/β2 − εh(e
−β + β − 1)/β2], (29)

χe = χh + 2 fiχh A1[c(eβ − β − 1)/β − εh(e−β + β − 1)/β]

+ fi A
3χh[cT1 − εha(1)] + 1

4 fi A
3(χi − χh)T2, (30)
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where fi is the volume fraction of the cylindrical inclusion. We should note that in the above
derivation of effective response we have applied the formulae F(1, 2, β) = (eβ − 1)/β and
F(1, 3, β) = 2(eβ − β − 1)/β2. The coefficients T1 and T2 are

T1 =
∞∑

k=0

(k + 3)[Pk+2(1) − Pk+2(0)]ak,

T2 =
∞∑

k=1

βk−1(s1
k + s2

k + s3
k )/(k + 1),

s1
k = 8[3(−2)k+4 − 3(−1)k+4 − (−3)k+4]/(k + 4)!,

s2
k = 8[−(−3)k+3 + (−2)k+3 + (−1)k+3]/(k + 3)!,

s3
k = [−3(−3)k+2 + (−2)k+2 − (−1)k+2]/(k + 2)!,

where the two values of Pk+2(1) and Pk+2(0) in the constant T1 can be calculated by the function
Pk(x) if x = 1 and x = 0, respectively,

Pk(x) =
∫

xkeβx dx = eβx

βk+1
[(βx)k − k(βx)k−1 + k(k − 1)(βx)k−2 − · · · + (−1)kk!].

Next we will demonstrate that our results can be reduced to the effective nonlinear
responses of homogeneous composites when the parameter β → 0. In this case, let β → 0;
we have the following limits,

lim
β→0

v1 = lim
β→0

v2 = 1/2,

lim
β→0

a(1) = lim
β→0

a′(1) = 0,

lim
β→0

B = (εh − c)/(εh + c) = b0,

lim
β→0

(eβ − β − 1)/β2 = 1/2,

lim
β→0

(e−β + β − 1)/β2 = 1/2,

lim
β→0

A = 2T,

lim
β→0

[Pk+2(1) − Pk+2(0)] = 1/(k + 3),

lim
β→0

T1 = lim
β→0

a(1) = 0,

lim
β→0

A1β = [1 − 2b0 − b3
0/3 − βiT

3]/σ = T0,

lim
β→0

T2 = 1/2,

where the coefficients b0 = (εh − c)/(c + εh), T = 2εh/σ , σ = εh + c. Substituting these
limits into equations (29) and (30),we get the effective responses of the homogeneous nonlinear
composites if εi(r) = c (i.e. β → 0) from equations (29) and (30), respectively.

εe = εh + T fi(c − εh), (31)

χe = χh + fiχh(c − εh)T0 + fiT
3(χi − χh), (32)

where the coefficients T and T0 are also, respectively, the coefficients c and b3 of [19, 15].
Comparing equations (31) and (32) with that of the nonlinear response of weakly nonlinear
homogeneous composites of [19, 15], we will see that our results are the same as those results
of [19, 15] for εi = c. In order to show the effects of the exponent dielectric function
profile on the effective nonlinear dielectric response, in figure 1 we plot the effective nonlinear
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Figure 1. The effective nonlinear dielectric response contrast ratio, χe/χh, of the exponent
dielectric function profile, εi = ceβr , as a function of the parameter β for different contrast ratios,
χi/χh, at volume fraction fi = 0.1. In the figure, the symbols X and Xe/Xh are the quantities
χi/χh and (χe/χh)/ max(χe/χh), respectively, and the parameter ratio c/εh = 1.

dielectric response of graded cylindrical composites with dielectric profile εi = ceβr versus
the parameter β at fi = 0.1. Clearly, the effective nonlinear dielectric response contrast ratio,
χe/χh, increases (or decreases) as the parameter β increases for small (or large) contrast ratio
χi/χh.

Case (b). For the power-law dielectric function profile εi(r) = ckr k , substituting the
potentials of the cylindrical inclusion into the left-hand side of equation (28), we have the
formulae of effective responses,

εe = εh + fi H0[ck(s + 1)/(s + k + 1) − εh], (33)

χe = χh + fiχh H1[ck(s + 1)/(k + s + 1) − εh] + fiχh H [ck(3s − k − 1)/(3s − 1) − εh]

+ 1
4 fi H

3
0 (χi − χh)(3s3 + s2 + s + 3)/(3s − 1), (34)

where the coefficients H , H0 and H1 are given in equations (20), (24) and (25). Here we
demonstrate that our results can be reduced to the effective nonlinear response of weakly
nonlinear composites when we take the limit k → 0 (i.e. εi = c0) for the power-law dielectric
profile. Taking k → 0 in equations (33) and (34), we have the following limits:

lim
k→0

H0 = 2εh/(εh + c0) = C,

lim
k→0

(s + 1)/(s + k + 1) = 1,

lim
k→0

(3s3 + s2 + s + 3)/(3s − 1) = 4,

lim
k→0

{H1[ck(s + 1)/(k + s + 1) − εh] − H [ck(3s − k − 1)/(3s − 1) − εh]}
= (c0 − εh)(1 − 2M0 − M3

0 /3 − βic
3)/(c0 + εh) = b3(c0 − εh),

where

M0 = (εh − c0)/(c0 + εh), b3 = (1 − 2M0 − M3
0 /3 − βic

3)/(c0 + εh),

C = 2εh/(c0 + εh).

Substituting these limits into equations (33) and (34), we have the following effective
response:

εe = εh + fiC(c0 − εh), (35)

χe = χh + fiχhb3(c0 − εh) + fi(χi − χh)C
3. (36)
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Figure 2. The effective nonlinear dielectric response contrast ratio, χe/χh, of the power-law
dielectric function profile, εi = ckrk , as a function of the parameter k for different contrast ratios,
χi/χh, at volume fraction fi = 0.1. In the figure, the symbols X and Xe/Xh, are the quantities
χi/χh and (χe/χh)/ max(χe/χh), respectively, and the parameter ratio ck/εh = 1.

Comparing equations (35) and (36) with the results of [19, 15], then we regain the effective
response of weakly nonlinear homogeneous composites with εi = c0. In figure 2, with
equation (34), we plot the effective nonlinear dielectric response of graded cylindrical
composites with dielectric profile εi = ckr k versus the parameter k for fi = 0.1. In contrast to
the exponent dielectric profile, the effective nonlinear dielectric response contrast ratio, χe/χh,
increases (or decreases) as the parameter k increases for large (or small) contrast ratio χi/χh.

4. Conclusion

We have developed the perturbation method to solve the problem of nonlinear graded
composites. For weakly nonlinear graded composites, the local potentials are derived from
the perturbation equations of graded composites of a cylindrical particle with exponent and
power-law dielectric profiles. The effective nonlinear responses are obtained in the dilute limit.
Furthermore, we have shown that our results can be exactly reduced to the effective response
of nonlinear homogeneous composites. Our results can be extended to predict the effective
nonlinear thermal conductivities of Kerr-like nonlinear graded composites without contact
heat resistance on the inclusion surfaces when the linear order thermal conductivity of the
cylindrical inclusion is an exponential function or a power-law function of radial distances of the
inclusion. For spherical inclusion particles with exponent and power-law dielectric profiles, the
perturbation method can also be used to deal with the effective nonlinear response of spherical
nonlinear graded composites. The effective response of a graded weakly nonlinear composite
is different form that of homogeneous weakly nonlinear composites. From our results, we can
see that the linear dielectric function profiles of graded inclusions give rise to strong effects on
the effective nonlinear response of graded composites. For higher concentration, the effective
response of graded nonlinear composites can be studied by EMA and MGA methods combined
with our potential solution of graded composites [21, 22]. For a complicated graded function, a
number method is useful for estimating the effective nonlinear dielectric response, such as the
finite element method [23]. Here we should note that some methods for dealing with nonlinear
homogeneous composites may be developed to solve the effective nonlinear response of graded
composites, such as the homotopy method for the weakly nonlinear problem [24, 25], the
variational method for strongly nonlinear composites [26–28], Rayleigh method for periodic
nonlinear graded composites [29], and so on.
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